Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(22): eadg4346, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256956

RESUMO

In aromatic systems with large π-conjugated structures, armchair and zigzag configurations can affect each material's electronic properties, determining their performance and generating certain quantum effects. Here, we explore the intrinsic effect of armchair and zigzag pathways on charge transport through single hexabenzocoronene molecules. Theoretical calculations and systematic experimental results from static carbon-based single-molecule junctions and dynamic scanning tunneling microscope break junctions show that charge carriers are preferentially transported along the hexabenzocoronene armchair pathway, and thus, the corresponding current through this pathway is approximately one order of magnitude higher than that through the zigzag pathway. In addition, the molecule with the zigzag pathway has a smaller energy gap. In combination with its lower off-state conductance, it shows a better field-effect performance because of its higher on-off ratio in electrical measurements. This study on charge transport pathways offers a useful perspective for understanding the electronic properties of π-conjugated systems and realizing high-performance molecular nanocircuits toward practical applications.

2.
Sci Adv ; 8(12): eabm3541, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35319984

RESUMO

Single-molecule junctions (SMJs) offer a novel strategy for miniaturization of electronic devices. In this work, we realize a graphene-porphyrin-graphene SMJ driven by electric field and proton transfer in two configurations. In the transistor configuration with ionic liquid gating, an unprecedented field-effect performance is achieved with a maximum on/off ratio of ~4800 and a gate efficiency as high as ~179 mV/decade in consistence with the theoretical prediction. In the other configuration, controllable proton transfer, tautomerization switching, is directly observed with bias dependence. Room temperature proton transfer leads to a two-state conductance switching, and more precise tautomerization is detected, showing a four-state conductance switching at high bias voltages and low temperatures. Such an SMJ in two configurations provides new insights into not only building multifunctional molecular nanocircuits toward real applications but also deciphering the intrinsic properties of matters at the molecular scale.

3.
Nat Commun ; 13(1): 1410, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301285

RESUMO

As conventional silicon-based transistors are fast approaching the physical limit, it is essential to seek alternative candidates, which should be compatible with or even replace microelectronics in the future. Here, we report a robust solid-state single-molecule field-effect transistor architecture using graphene source/drain electrodes and a metal back-gate electrode. The transistor is constructed by a single dinuclear ruthenium-diarylethene (Ru-DAE) complex, acting as the conducting channel, connecting covalently with nanogapped graphene electrodes, providing field-effect behaviors with a maximum on/off ratio exceeding three orders of magnitude. Use of ultrathin high-k metal oxides as the dielectric layers is key in successfully achieving such a high performance. Additionally, Ru-DAE preserves its intrinsic photoisomerisation property, which enables a reversible photoswitching function. Both experimental and theoretical results demonstrate these distinct dual-gated behaviors consistently at the single-molecule level, which helps to develop the different technology for creation of practical ultraminiaturised functional electrical circuits beyond Moore's law.

4.
J Am Chem Soc ; 143(49): 20811-20817, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34846141

RESUMO

The aim of molecular electronics is to miniaturize active electronic devices and ultimately construct single-molecule nanocircuits using molecules with diverse structures featuring various functions, which is extremely challenging. Here, we realize a gate-controlled rectifying function (the on/off ratio reaches ∼60) and a high-performance field effect (maximum on/off ratio >100) simultaneously in an initially symmetric single-molecule photoswitch comprising a dinuclear ruthenium-diarylethene (Ru-DAE) complex sandwiched covalently between graphene electrodes. Both experimental and theoretical results consistently demonstrate that the initially degenerated frontier molecular orbitals localized at each Ru fragment in the open-ring Ru-DAE molecule can be tuned separately and shift asymmetrically under gate electric fields. This symmetric orbital shifting (AOS) lifts the degeneracy and breaks the molecular symmetry, which is not only essential to achieve a diode-like behavior with tunable rectification ratio and controlled polarity, but also enhances the field-effect on/off ratio at the rectification direction. In addition, this gate-controlled symmetry-breaking effect can be switched on/off by isomerizing the DAE unit between its open-ring and closed-ring forms with light stimulus. This new scheme offers a general and efficient strategy to build high-performance multifunctional molecular nanocircuits.

5.
Angew Chem Int Ed Engl ; 60(22): 12274-12278, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33650169

RESUMO

Charge transport in a single-molecule junction is extraordinarily sensitive to both the internal electronic structure of a molecule and its microscopic environment. Two distinct conductance states of a prototype terphenyl molecule are observed, which correspond to the bistability of outer phenyl rings at each end. An azobenzene unit is intentionally introduced through atomically precise side-functionalization at the central ring of the terphenyl, which is reversibly isomerized between trans and cis forms by either electric or optical stimuli. Both experiment and theory demonstrate that the azobenzene side-group delicately modulates charge transport in the backbone via a single-molecule stereoelectronic effect. We reveal that the dihedral angle between the central and outer phenyl ring, as well as the corresponding rotation barrier, is subtly controlled by isomerization, while the behaviors of the phenyl ring away from the azobenzene are hardly affected. This tunability offers a new route to precisely engineer multiconfigurational single-molecule memories, switches, and sensors.

6.
Nat Commun ; 10(1): 1450, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926785

RESUMO

By taking advantage of large changes in geometric and electronic structure during the reversible trans-cis isomerisation, azobenzene derivatives have been widely studied for potential applications in information processing and digital storage devices. Here we report an unusual discovery of unambiguous conductance switching upon light and electric field-induced isomerisation of azobenzene in a robust single-molecule electronic device for the first time. Both experimental and theoretical data consistently demonstrate that the azobenzene sidegroup serves as a viable chemical gate controlled by electric field, which efficiently modulates the energy difference of trans and cis forms as well as the energy barrier of isomerisation. In conjunction with photoinduced switching at low biases, these results afford a chemically-gateable, fully-reversible, two-mode, single-molecule transistor, offering a fresh perspective for creating future multifunctional single-molecule optoelectronic devices in a practical way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...